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Ground State Degeneracy and Ferromagnetism 
in a Spin Glass 
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We prove three results for the two-dimensional Ising spin glass model on a 
square lattice: (a) finite entropy for the ground state; (b) ferromagnetism for low 
concentrations of antiferromagnetic bonds and low temperatures; (c) vanishing 
magnetization for a spin glass with equal concentrations of ferro- and anti- 
ferromagnetic bonds. 
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1. I N T R O D U C T I O N  

The Ising spin glass model  on Z 2 has spins o i = + 1 on sites i ~ Z 2 and  

nearest -neighbor  interact ion with coupling Jb = + 1, b ~ B, B the set of 
bonds.  The Jb are i ndependen t  r a n d o m  variables with P rob ( J  b = - 1) = x. 
T h e r m o d y n a m i c  funct ions  such as the free energy and  the magnet iza t ion  
are r a n d o m  variables on the space of bond  configurations.  

Cons ider  a finite volume A and  let o E ( - 1 ,  1}A a nd  J ~ ~ = 

( - 1 ,  1) B(A) denote  the spin and  b o n d  configurations,  respectively, where 
B(A) = {b[Ob  C A).  The Hami l ton i an  is defined as 

(1.1) 
b ~ B(6) 
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where 

OA = I'[ ai for A C A 
iEA 

The free energy per site is 

fA(J)  = ~ lnZA(J ) (1.2) 

where (fi = 1/kT) 

ZA(J ) = ~] e -  ~HA~J,o) (1.3) 
17 

The magnetization is defined as 

1 m6(J ) = ~-~ ~ (Oi>A(J) (1.4) 
lEA 

(Oi)A(J) = Z A ( j ) - I  ~] ~176 ) (1.5) 
0 

Finally, o ~ is a ground state if, for all o satisfying some specified boundary 
conditions, 

Ha(J, a) >1 Ha(J, e ~ (1.6) 

Let GA(J ) be the number of ground states. Then the ground state entropy is 
defined to be 

SA(J ) = ~-~lnl GA(J ) (1.7) 

Let/~,(J)  denote the product measure on f~, 

i~x(J) = x N (1 - x) N§ (1.8) 

where N + is the number of bonds b ~ B (A) such that Jb = -+ 1. We write 

(.--) = ~,  ~ ( J ) ( - )  (1.9) 
J 

for the average of some quantity with respect to J. 
Standard arguments assure the existence of the thermodynamic limit, 

under suitable conditions on the growth of A, for the free energy and the 
ground state entropy3 ~,4) Obviously, the limits are invariant with respect to 
the translation group r, and (f~,/~x, r) with A = 77 2 is a Bernoulli system. It 
is then a consequence of the ergodic theorem that/~x-almost everywhere 

liar ~ SA(J ) = limAt (SA) x ( 1.1 0) 

A similar formula holds for fA(J) and mA(J ). Our main results are the 
following: 
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Theorem 1.1. For all A (sufficiently large) and all boundary condi- 
tions 

(SA) x >/ p In 3 
100 

p = 1 3 2 [ x ' 6 ( 1 -  x) '2~ + x12~ X) 16] 

The theorem guarantees finite zero-point entropy for 0 < x < 1. 

R e m a r k .  An alternative definition of the residual entropy is the 
T--> 0 limit of the finite temperature entropy. The two definitions need not 
always coincide. For a study of this question see Ref. 1. 

Let c = [3(3 + ~ - ) ] -  1/2 ___ 0.274 and suppose that 

T = 0, 0 < x < (c/2)2----- 0.0188 

Theorem 1.2. 

(1) 
or that  

(2) 
or that  

(3) 

x = 0 ,  0 < 2kT < ln(~/2- + 1) 

2e -2B + 25/4x 1/2 < c 

Then, for positive boundary conditions and some m 0 > 0 independent of A, 

(ma) x >I m o. 

The theorem guarantees the existence of a ferromagnetic phase. Under 
hypothesis (2) the result is well-known. With hypotheses 1 or 3, the proof is 
based on the Peierls-Griffiths argument and features colored contours. 

Remarks. (1) Cohomology is in many ways the natural language to 
describe the Ising spin glass. In this paper we have avoided its use so as to 
bring the physics to the fore. This is the reason for treating only the 
two-dimensional system. In dimensions n/> 3, the Peierls argument also 
guarantees ferromagnetism. Moreover, using techniques of Ref. 11, sharper 
estimates may be obtained for n = 2: the constant 0.0188 in hypothesis (1) 
of the theorem may be replaced by 0.0283. This will be discussed elsewhere. 

(2) The phase diagram of the Ising spin glass on a square lattice is 
symmetric under x -~ 1 - x. This establishes an antiferromagnetic phase for 
1 - x and T small. The symmetry follows from a global gauge transforma- 
tion that flips all bonds and every second spin. 

Theorem 1.3. For all A c A 

(<oA>A)x=,/2= o 

independent of the boundary conditions. 
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0 1/2 -,, x 

Fig. 1. Regions in the (x, T) plane for which tfiere are rigorous results (schematic) for the 
spin glass. The ferromagnetic and antiferromagnetic phases due to Theorem 1.2 are dotted. 
The magnetization vanishes on the line x = 1/2 and in the hatched region T > T c represent- 
ing the (unique) high-temperature phase as implied by the correlation inequalities (1.11). The 
symmetry of the phase diagram about x = 1/2 reflects the gauge symmetry. 

The theorem precludes a ferromagnetic phase for x = 1/2. It  does not, 
however, preclude other sorts of order. In particular, it says nothing about  a 
spin glass phase. 

These theorems and the fact (v) that 

Ko~):,(S)l < ~7:, (J = + l) (l.ll) 

which states that the critical temperature for the Ising ferromagnet is an 
upper bound on the critical temperature for the spin glass, provide rigorous 
information on the phase diagram of the Ising spin glass as shown in Fig. 1. 

2. COLORED CONTOURS 

Ferromagnetic Ising spin systems with Jb = 1 are equivalent to contour 
models on the dual lattice. (3) For two-valued bond variables Jb = + 1 we 
introduce colored contours. 

Definition 2.1. A g* string is a maximal, connected chain of bonds 
in the dual lattice A* such that Jb = - 1 for all b* ~ g* c B(A*). When 
two g* strings cross, the ambiguity at crossing is resolved in the usual 
way.(3) 

Remarks. (1) g stands for green, g* strings characterize the anti- 
ferromagnetic bonds in the lattice and are independent of the spin configu- 
ration. See Fig. 2. 

(2) Another model where g* strings arise is the random, dilute mag- 
net. (4) In this model Jb E {0, 1}, and Definition 2.1 should be modified by 
replacing - 1 by 0. 
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Fig. 2. 

, J 

- I II 
A bond configuration J and the g* strings (double lines) associated with it. Anti- 

ferromagnetic bonds are represented by heavy lines. 

(3) (~[2), Z2 + I 1 = (~,~). Objects in the dual lattice are marked with an 

asterisk. An asterisk also denotes the operation that identifies a plaquette in 
the dual lattice with a site in A, a bond in A* with a bond in A, and a site 
in A* with a plaquette in A. Thus for k = (kl,k2)~A we have k * =  
(k~ + �89 k2 + �89 ~ A*. 

DefiniUon 2.2. An r* string is a maximal, connected chain of bonds 
in the dual lattice A* such that Jboab = -- 1 for all b* ~ r* c B(A*). See 
Fig. 3. 

Romarks. (1) r stands for red. The r* strings describe the unsatisfied 
bonds. At high temperatures red strings are long and winding, at low 
temperatures they are short and scarce. 

(2) Up to an additive constant the energy of a configuration is the total 
length of the r* strings. 

We now recall the usual Peierls contours. These are contours, C*, in 
the dual lattice that separate + spins from - spins. The Peierls contours 

Fig. 3. 

l J I J f I 

+ @ -  

+ _ ~ _ l  _ 
I 

I t-r- ,  I I I 

r r ,<-_4--_ ! 
I 

I I ' r  I I 
A spin-bond configuration and the corresponding r* strings (broken lines). Anti- 

ferromagnetic bonds are represented by heavy lines. 
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uniquely determine the spin configuration and are closed curves provided 
one uses positive boundary conditions. 

Lemma 2.3. Let b* be a dual bond on some Peierls contour C*. 
Then b* belongs either to some g* string or to some r* string but not to 
both. 

Proof. By definition, Oab = -- 1 for every b* ~ C*. If Jb = + 1 (-- 1), 
then b* belongs to an r* string (g* string). 

The categories C*, g*, and r* in the lemma may be permuted. Thus every 
bond is part of either zero or two kinds of string. The lemma also holds for 
the random magnet with Jb ~ {0, 1 }. 

Let P(A) be the set of plaquettes in A. A plaquettep ~ P(A) is said to 
be frustrated if 

o, p = I I  s0 = - 1 (2 .1 )  
b~Sp 

A bond configuration J is said to describe irrelevant disorder if there are no 
frustrated plaquettes. In particular, the pure ferromagnet (Jb = + 1) and the 
antiferromagnet (Jb ---- -- 1) have no frustrated plaquettes. 

Lemma 2.4. r* strings and g* strings have the frustrated plaquettes 
as common set of bounding dual sites. In detail, every r*(g*) string 
connects two frustrated plaquettes, or is a closed contour, or connects the 
boundary of A to a frustrated plaquette or to the boundary itself. 

Proof. If p is a frustrated plaquette, one or three of its bounding 
bonds are antiferromagnetic. Thus, precisely one g* string terminates at the 
dual site p*. Likewise, one or three bonds are dissatisfied. Thus, precisely 
one r* string terminates at p*. 

3. GROUND STATE DEGENERACY 

In the ground state, the total length of the r* strings is minimal. (5'9) J[n 
particular, determination of the ground state degeneracy is a geometric 
problem. Roughly, the finite entropy is a consequence of two facts: 

(1) There may exist different possible pairings of frustrated plaquettes 
by r* strings with the same energy. 

(2) Two frustrated plaquettes that do not lie on a common row or 
column have at least two shortest connecting r* strings. 

At first it may appear that finite entropy follows trivially from configu- 
rations of the type shown in Fig. 4a. In the ground state one expects the 
two plaquettes to be paired if they are far from the remaining frustrated 
plaquettes, and, as the two plaquettes may be connected by at least two 
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% 
A 

b 

Fig. 4. (a) If there are only two frustrated plaquettes in A, they are likely to be paired by an 
r* string. In the situation shown, there are two possibilities for choosing an r* string of 
minimal length. (b) A situation is sketched where the two frustrated plaquettes in A are not 
connected by an r* string. Here the region A does not contribute to the degeneracy of the 
ground state. 

shortest r* strings, the configurat ion leads to a twofold degeneracy, at least. 
This type of frustration has constant  density in 2 2 . Thus, the degeneracy of 
the ground state in a large box A increases exponentially with IAI leading to 
finite entropy. However,  this a rgument  is incomplete. The two plaquettes 
may  not  be paired at all in the ground state, even if they are well isolated 
f rom the remaining frustrated plaquettes, as is the case in Fig. 4b, where the 
degeneracy is lost. Thus, a diagonal pair  of frustrated plaquettes may  or 
may  not  lead to a degenerate ground state depending on the bounda ry  
conditions. 

The problem then is to show that there exists a configurat ion q0(J) of 
frustrated plaquettes in A C A (for A sufficiently large) such that H A (J, o) 
laas a degenerate g round  state independent of the frustration in A\A for 
all A. 

Notice that, in the g round  state, two r* strings cannot  run parallel to 
each other for long stretches. The reason is illustrated in Fig. 5. More  
precisely, let r] ~, and r~ be ground  state strings parallel to some axis and  let 
~rr~, 2 be the projection onto this axis. Then 

dist(r~',r~')/> ]~r] ~ N ~r~'[ (3.1) 

Nondegeneracy  is a strong condit ion on the geometry of the r* strings. In  

I 

D . . . . . . . . . . . .  " . . . .  R 

Fig. 5. Two r* strings of a ground state never run parallel for large distances, since the total 
length of such strings may be reduced by adding a closed contour and thereby eliminating the 
double line sections. 
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Fig. 6. The configuration q~ of five frustrated plaquettes in A leads to a degenerate ground 
state independent of the frustration in A\A. Up to four r* strings may be drawn causing no 
degeneracy. 

fact, a ground state in A is nondegenerate only if (a) all r* strings in A are 
straight lines, and (b) no two r* strings intersect. 

We shall now construct a configuration cp of frustrated plaquettes such 
that (3.1) and (a) and (b) cannot simultaneously hold. This then implies 
that the ground state in A is degenerate for all boundary conditions, q0 is 
shown in Fig. 6. It has five frustrated plaquettes on the diagonal in A. If the 
ground state were nondegenerate, all of the five plaquettes would be 
connected to the boundary of A by straight r* strings. By virtue of (3.1) no 
two strings run in the same direction. Thus, once the four directions of the 
compass have been exhausted, the string of at least one plaquette must 
violate (a) or (b). As a consequence, GA (J)  >/2 independent of the frustra- 
tion in A\A. An improved lower bound on the entropy follows from 
configurations ep'(J') in A '  C A with five frustrated plaquettes as shown in 
Fig. 7. Using the same argument we find 

GA,(J' ) >/3 (3.2) 

The probability for qV to occur is 

Prob(q0') >1 p = 132[x'6(1 - -  x )  120 -[- X120(1 -- X) 16] (3.3) 

To complete the argument, consider A containing n squares A j ( j  = 
1 . . . . .  n) separated by unit corridors. The bonds in distinct squares are 
independent random variables. The probability that precisely m out of n 
squares have the configuration cp' is 

p . (m)  = (~n)pm(1 _ p ) . - m  (3.4) 
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Fig. 7. The region A' and the configuration of five frustrated plaquettes, q/, yield an 
improved estimate of the entropy. 

Consequently, 

1 (SA) x= ]-~ ~ I~x(J)lnGA(J) 
J 

>i ~ ~ p,,(m)mln3= n p l n 3  (3.5) 
m~0 N 

For all n, [Al/n < IA'[ = 100. The bound (3.5) is poor. For x ~ 0  one 
expects S =  6x21n2 + O(x3). 

4. THE PEIERLS ARGUMENT 

Choosing positive boundary conditions we know that all C* contours 
that separate plus from minus spins are closed. Consider a C* contour, j ,  
with length l. Its energy is 

E n = l -  n + En (4.1) 

where n is the number of dual bonds b* E j  such that Jb = E. We mainly 
deal with e = - 1 (spin glass) but shall also be interested in the case e = 0 
(random magnet). Flipping the spins insidej  gives a spin configuration with 
energy lower by 2E,. Let Xj(o) denote the characteristic function of the 
contour j .  Then (3) 

<Xj>A(J) <~ (1 + e 2~E" )-' 
The number of contours of length l, Nz, is bounded (3) by 

N, < IAI4 x 3 ' -2/ t  

(4.2) 

(4.3) 
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Suppose 
l 

n=O 

< yz (4.4) 

Then  the fraction of minus spins is bounded  from above by 

Q -  IAI /=4,6,8. . .  

[ 1 ( ; (3Y)~ [2 - (3y) 2] ~ 3y 2 (4.5) 
< ~ 8  1 -~ (~y):  1 - 9 y  2 

I f  
y - ' j2  

0.2748 (4.6) 

then Q < 1 /2  and "(ma) x > 0 for all A. Explicit estimates f o r y  are 

(1) y = 2x '/2, T = 0, , = - 1 (4.7) 

(2) y = x, T = 0, e = 0 (4.8) 

(3) y = e -z~, x = 0 (4.9) 

(4) y = 2e -za  + 25/4X 1/2, E = -- 1 (4.10) 

To  derive (4.10) we used 

l l/2 . xl--n] 

< (2e-2~)z+  2(2xl /2)  t 

~< (2e -2~ + 25/4x|/2)l (l >I 4) 

Remarks. (1) The best estimates available of critical concentra t ion 
x c (at T =  0) are based on Monte-Car lo  calculations and give xr ~ 0 . 1 2  + 
0.04.(8) 

(2) For  the r andom magnet  (e = 0), the Peierls argument  predicts 
ferromagnetism for T = 0 and 0 < x < c ~ 0.27. Actually, it is believed 
that the threshold is xc = 0.5, (4) coinciding with the bond  percolat ion 
threshold. This means that  the present argument  underest imates x~ by a 
factor of about  2 though it improves previous estimates. (4) 
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5. GAUGE INVARIANCE 

Spin glasses may be viewed as lattice gauge theories with external 
random gauge fields. In gauge theories it is known that local gauge 
invariance implies zero magnetization. Similar results are expected to hold 
for certain spin glasses. This is the basic idea behind our proof of Theo- 
rem 3. 

We start out by introducing the coboundary operator ~ formally 
A 

defined by 0c = (ac*)*, where c may be a set of sites or bonds. For 
instance, the coboundary of a site i is the set of four bonds having,/ as 
common vertex. A gauge transformation at i flips oi and Jb with b E ai. It 
induces a map of the variables %(A C A) and Jv[V c B(A)]. More gener- 
ally, a gauge transformation gc flipping all spins inside C c A has the 
following effect on the spin (bond) configuration: 

gcoA = ( -  1)IC•AIoA 

gcJv = ( -  1)l v n ~Cl Jv (5.1) 

Local gauge transformations leave the energy Ha(J, o) invariant but change 
the measure i~x(J ) to i~x(gcJ). By (1.8), ~l /2(J)  is gauge invariant. Let 
A c A and g = gc with I C r3 A I = odd. Consider the function 

e~(J) = <o A )a ( J  ) (5.2) 

Then 

#p( gJ ) = ZA( gj )-  I E oAe-BHA( g J,~ 
o 

= Z a t J ) - '  E goae -e"A(J',) = -•(J)  (5.3) 
( I  

where the gauge invariance of H a and (5.1) was used. However, by the 
invariance of/~1/2, 

0 = E ~, /2(J ) [~(J )  + * ( J ) ]  
J 

= 2 ~  1~,/2(J)qa(J) = 2 ( < O A ) A )  x 
J 

Remarks. (1) This is essentially the argument of the Elitzur theo- 
rem. (6) See also Ref. 10. 

(2) The spin glass phase is defined by the Edwards-Anderson order 

parameter ((ao)2)x . Since this parameter is gauge invariant, our arguments 
do not apply here. 
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